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Recent experiments reveal that  mean spreading rates of artificially excited shear 
layers undergo abrupt changes a t  certain discrete positions within the flow. This 
paper is concerned with the interaction between externally excited instability waves 
and these regions of relatively sudden change in mean flow. While the main emphasis 
is on the acoustic field produced by these interactions, the upstream influence a t  
the nozzle lip is also considered. 

1. Introduction 
This paper is concerned with the sound produced by artificially excited spatially 

growing instability waves on subsonic shear layers. These waves would become 
transcendentally small a t  transverse infinity if the mean flow were assumed to be 
parallel, and no acoustic radiation would be produced in that case. But real flows 
always diverge in the downstream direction and sound can be produced by the 
interaction of the instability waves with the resulting streamwise variations of the 
flow. Tam & Morris (1980) treated the mean-flow divergence as a small parameter 
and used matched asymptotic expansions to  calculate the sound generated by this 
interaction. They concluded that it produces very little sound at subsonic speeds. 

Crow & Champagne (1971), Ffowcs Williams & Kempton (1978), and more recently 
Huerre & Crighton (1983) used Lighthill’s (1952) acoustic analogy to calculate the 
sound produced by this mechanism. These analyses all assume that the shear layer 
grows in a gradual fashion, but recent experiments of Ho & Huang (1982) and Oster 
& Wygnanski (1982) reveal that  excited shear layers undergo sudden changes in 
their growth rates a t  certain discrete locations. Some typical results are shown in 
figure 1 .  

Part  of the shear-layer growth can probably be attributed to  Reynolds stresses 
produced by the externally excited instability waves (which we identify with the 
large-scale coherent motions of the flow). The local growth rates of these waves vary 
with shear-layer thickness and eventually go to zero when the shear layer is 
sufficiently thick relative to the instability wavelengths. Since the corresponding 
Reynolds-stress terms will then go to zero, i t  is not surprising to find that the 
shear-layer growth rate also goes to  zero a t  this location (or nearly so). What is 
surprising is that i t  does so in a very sudden fashion! The shear-layer thickness then 
remains relatively constant until a lower-frequency (i.e. longer-wavelength) in- 
stability wave - usually the first subharmonic of the former - becomes sufficiently 
large to cause the shear layer to  resume its downstream growth. This behaviour is 
illustrated in figure 2, which is a composite of data taken by Ho & Huang (1982) and 
Oster & Wygnanski (1982). 
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FIGURE 1. Measured spreading rate of forced mixing layer between two parallel streams. (a), (b) 
Data of Oster & Wygnanski (1982); forcing frequency 50 Hz, forcing amplitude 0.15 cm. ( c )  Data 
of Ho & Huang (1982) ; initial velocity fluctuation approximately 0.1 Yo of mean. ( d )  Data of Ho 
& Huang (1982); initial velocity fluctuation 0.07 yo of mean; forcing frequency 3.29 Hz. 
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FIQURE 2. Amplification of instability wave an growth of mixing layer. Data of Ho & Huang 
(1982). Initial velocity fluctuation approximately 0.1 yo of mean. 
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Pressure fluctuations are set up in order to balance the mass and momentum 
fluctuations that occur when the instability waves pass through these regions of 
sudden change in shear-layer growth. This paper is concerned with the sound field 
and ‘upstream influence ’ associated with these fluctuations. The ‘upstream in- 
fluence’ or ‘feedback’ can interact with the splitter-plate lip to produce a down- 
stream-propagating instability wave which could, under certain conditions, be the 
same instability wave that originally generated the upstream influence. This type 
of ‘resonance’ is responsible for producing the so called ‘edgetones’ that occur 
when a downstream edge is inserted into a shear layer. 

Ho & Huang (1982) detected a significant subharmonic of the excitation frequency 
near their splitter-plate lip, which they take to be an indication that some sort of 
feedback mechanism was operative in their experiment. Our analysis shows that the 
present mechanism is far too weak to produce a feedback loop in their experiment - 
though it could do so in other experiments. 

We are interested in very low-Mach-number flows, so that compressibility effects 
can only become important over large distances. The shear-layer flow, which is 
calculated in 52, can then be treated as if it were incompressible. The associated 
unsteady motion is treated as a linear perturbation about the experimentally 
observed mean flow. There is now considerable evidence to support the contention 
that this latter approximation may provide a fairly good description of the real flow 
even when the amplitude of the unsteady motion is fairly large (relative to the 
mean). Gaster, Kit & Wygnanski (1984), for example, show that weakly non-parallel 
stability theory is able to predict the observed transverse distribution of the filtered 
streamwise velocity fluctuations in two-dimensional shear layers even when the 
amplitude of the unsteady motion is 20% of the mean velocity. Champagne & 
Wygnanski (1984) obtain even better agreement for plane wakes, and Strange & 
Crighton (1983) demonstrated that linear instability theory even works fairly well in 
the regime where significant nonlinearity is expected to occur. Finally, it is worth 
noting that the unsteady motion is fairly small relative to the mean in both the Ho & 
Huang and Oster & Wygnanski experiments because the change in mean velocity 
(and consequently the instability wave growth rates) are fairly small there. 

The mean velocity is assumed to be nearly parallel and slowly varying in the 
streamwise direction except at the discrete positions (indicated by S,, . . . , S,  in 
figure 3) where it undergoes sudden changes in direction. We treat these locations as 
‘actuator disks’ (Horlock 1978, p. 35) and derive appropriate ‘jump conditions’ for 
the unsteady flow in 52.1. 

The method of multiple scales is used (Nayfeh 1973, pp. 288 ff.) to calculate the 
instability waves on the slowly diverging mean flow between the actuator disks. But 
a ‘diffracted’ solution, which is constructed in $2.5, must be added to these waves 
in order to conserve mass and momentum across the disks. This latter solution has 
an acoustic field which is calculated in $3  by using matched asymptotic expansions 
to account for compressibility effects. 

We first consider the acoustic field produced by a single discontinuity. It behaves 
like a stationary (i.e. non-convecting) point quadrupole source. This result is then 
modified to account for interference effects between different discontinuities. The 
ensuing radiation pattern can be much more directional than those of the individual 
sources. 

Kibens (1980) excited a jet shear layer by using a harmonic acoustic source at  the 
nozzle lip. He found that the jet’s natural broadband noise was then suppressed and 
that most of the sound was radiated at  the excitation frequency and its subharmonics. 
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FIGURE 4. Directivity of discrete tones in the enhanced jet. Data from Kim (1983); f ,  = exci- 
tation frequency; M = 0.21. (Directivity pattern at f ,  is contaminated by excitation signal.) 

His measurements in the near and far fields showed no Doppler shift in frequency - 
indicating that most of the sound was generated by stationary sources, whose 
locations he subsequently identified as the vortex-pairing locations. Since the vortex- 
pairing locations coincide with regions of sudden change in shear-layer growth in the 
Ho & Huang experiments, the present analysis may be relevant to the pure-tone 
vortex-pairing noise observed by Kibens (1 980). 

Laufer & Yen (1983) and Kim (1983) carried out similar experiments - but a t  much 
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lower Mach numbers. The former found that all subharmonics of the excitation 
frequency (the fundamental was contaminated by the excitation signal) radiated 
much more directionally than the stationary point quadrupole source that would 
result if interference effects were neglected in the present analysis. But Kim found 
that  the second and higher subharmonics were relatively non-directional in his 
experiment. (Some of his data are reproduced here as figure 4.) I n  any case, 
source-interference effects may be able to explain the observed directionality in 
Laufer's data, but i t  does not seem appropriate to  make any direct comparison a t  
this stage. 

Finally, Zaman (1983) claims that subharmonic tones can only occur when the 
nozzle boundary layer is laminar. But this is the condition where the instability-wave 
Reynolds stresses will have the largest effect on shear-layer growth, and consequently 
where growth-rate discontinuities would be most likely to occur. 

The upstream influence is evaluated in 54 and the generation of downstream- 
propagating instability waves is discussed by using ideas originally proposed by 
Crighton & Leppington (1 974). As already indicated, the resulting instability wave 
turns out to be much too weak to produce the upstream influence that originally 
generated this wave in the first place. 

2. Flow in the shear layer and near field 
The flow in the shear layer will be treated as inviscid and nearly incompressible, 

but, as will be seen below, first-order terms in the squared Mach number must be 
retained in order to completely determine the acoustic field produced by this flow. 
The motion is assumed to be isentropic and the fluid is assumed to be an ideal gas. 

2.1. Formulation 
We suppose that the mean flow, whose configuration is illustrated'in figure 3, is 
two-dimensional and has constant density i j .  We also suppose that all lengths have 
been non-dimensionalized by some characteristic thickness of the shear layer, say So, 
that  the velocity has been non-dimensionalized by the average velocity 

of the two streams, the time t by So/o, the density by p and the pressure by pi?". 
Finally, we suppose that the mean flow varies only slowly in the streamwise direction, 

U = ~ ( U , + U , )  (2.1) 

so that 

where the streamwise and transverse mean-velocity components U and EV are O(1) 
and O ( E )  respectively, where E is a small 'spreading' parameter O(So/L) and L 
represents some characteristic streamwise distance, say between the nozzle lip and 
one of the discontinuities in the mean flow. 

Now assume that a small-amplitude two-dimensional motion with harmonic time 
dependence of (non-dimensional) frequency w is imposed on this mean flow. Then, 
in the regions between the discontinuities a t  So, . . . , S,, its streamwise and transverse 
velocity components u e-iwt, v e-iot and pressure pee-iwt are determined to  O(e)  (and 
to  sufficient accuracy in Mach number) by the linearized momentum and continuity 

( :; :2 au ap 
( ax a y  ax -iw+U- u+v-+-=---s V-+u- , 

equations 

(2 .5)  
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(-io+ u&)v+$ = -e( v e + v 3 ,  

au av aP -iu+ U -  p+-+- = --eWV-, I) ax ay a Y  

where M denotes the mean-flow Mach number based on Uand the (constant) mean-flow 
sound speed 6. Since the motion is assumed isentropic (and since we are dealing with 
an ideal gas), conservation of fluctuating mass and momentum requires that u, v and 
p satisfy the 'actuator-disk' jump conditions (Horlock 1978, p. 35) 

continuity A[u+WpU] = 0,  (2.8) 

x-momentum A[p+2uU+M2pU2] = 0,  (2.9) 

y-momentum A[ Uv + e(u + M2pU) v] = 0, (2.10) 

across the discontinuities in mean-flow direction, where A[. . .] denotes a jump in the 
indicated quantity. It is worth noting that these equations apply to O ( M 2 ) ,  even 
when the mean density changes by O ( E )  across the discontinuities. 

2.2. Similarity variables 

The measurements of Ho & Huang (1982) clearly indicate that the streamwise mean- 
velocity components can be expressed in similarity form (in the regions between 
so, . . . ,S,) 

u= Wy), (2.11) 

where 7 = [Y - Y o ~ ~ l ~ l / ~ ~ ~ l ~ ~  (2.12) 

So S(xl) is an appropriate local shear-layer thickness, and So yo(xl) is the characteristic 
centreline ' position of the shear layer. 

In  order to satisfy continuity, we require that 

(2.13) 

where V, is the mean-velocity component in the direction transverse to y = constant 
and the primes denote differentiation with respect to xl. 

Using 7 and x as new independent variables, we find that the region of flow shown 
in figure 3 maps into the rectangular region depicted in figure 5 and that (2.5)-(2.7) 
become 

u+vU'+S-= aP e[(ysl+yh)D(Uu+p)-VDu], (2.14) ax 

v+Dp = -e(VIDv+ V'v), (2.15) 

au 
ax 

p+Dv+S- = e[(qsl+y;)Du-M2VLDp], (2.16) 

where D = a/ar and the primes denote total derivatives with respect to the 
appropriate arguments (i.e. y or xl). 
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FIQURE 5. Flow configuration in (v, 2)-plane. 

2.3. The instability wave 

To lowest order in c,  (2.14)-(2.16) are satisfied by the Kelvin-Helmholtz instability 
wave 

{uo, vo,po} = { q r ,  XI), q7> x,) ,Fo(r ,  zl)leiJa(zl)dz, (2.17) 

where a& and {i i0(v,  zl), V o ( ~ ,  zl), %(T,  z,)} represent the eigenvalue and eigenfunction 
of the compressible Rayleigh equations 

ia&(U-c)Eo+G0 U'+ia&po = 0, (2.18) 

(2.19) ia&( U -  c )  Go + Dpo = 0, 

iabM2( U -  c) Po + DGo + ia&iio = 0, (2.20) 

corresponding to the boundary condition that 
(exponentially fast) 

{uo,Go,po)-fo - as r + o  (2.21) 

and c = w / a .  (2.22) 

We suppose that the slowly varying amplitude function, which accounts for 
mean-flow divergence effects, is incorporated into the definitions of iio, Go and po 
(which depend on the slow variable z,). We do not explicitly display it until specific 
calculations are carried out in $3. 

2.4. The $first-order solution 

Since U itself is continuous across S,, ..., S,, it is clear that (2.17) satisfies the jump 
conditions (2.8)-(2.10) to within an error O ( s ) .  We now extend this solution to include 
O ( E )  terms by putting 

{u, v ,  PI = {UO? l.'o,p,} + 4 U 1 ,  v1,pJ + * * - 9  (2.23) 

where {ul, v,, p,} satisfies an inhomogeneous system of equations whose inhomogeneous 
term is calculated from {uo, vo,po}. 

It is convenient to decompose {ul, vl, p,} into the sum of a particular solution that 
'eliminates ' this inhomogeneous term, but does not satisfy the required jump 
conditions across S,, . . . , S,, and a homogeneous solution {uH, vH, pH} that causes these 
conditions to be satisfied to appropriate order. Thus it follows from (2.14)-(2.16) and 
(2.1 7)-( 2.20) that 

{ u 1 3  '1>P1) = ~ ~ ~ ~ ~ ~ z ~ ~ ~ ~ ~ ( ~ ~ x ~ ) ~ ~ ~ ~ ~ , X ~ ) ~ e i J a ~ " 1 ~ d z ~ ~ U ~ ~ v ~ ~ ~ ~ } ~  (2.24) 
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where 

a 
ax, 

iaS( U-c)  El + G, U' + ia@, = (yS' + yi) D( UE, + P o )  - V DEo] - 6- (UG, +Po) ,  
(2.25) 

(2.26) 
av, 
ax1 

iaS(U-c)V,+Dp, = -(VIDVo+ V'V,)-SU--, 

a -  
iaSM2( U -  c )  p, + DV, + iaSE, = [($' + y;) DEo - M2 V,Dp,] - S- (uo + M2 Up,) ; 

ax, 
(2.27) 

(2.28) 

(2.29) 

au 
ax p , + D v H + 6 2  = 0, (2.30) 

and i t  is appropriate to require that {U,, V1, p,} satisfy the same boundary condition 
a t  infinity as {Go, Vo,po]. 

Inserting (2.23) into (2.8)-(2.10), using (2.17) and (2.24), neglecting terms O(M4) 
and equating to zero coefficients of like powers of e, we obtain the following jump 
conditions for {uH, vH,pH} : 

continuity A[uH] = - B A[fi,], (2.31) 

x-momentum A b H ]  = - B Am,], (2.32) 

y-momentum U A[vH] = - B A[ UG, + V(U, + UM2po)] ,  (2.33) 

where 

B = exp (i s:, a(xl) dz) (2.34) 

represents the complex 'amplitude' of the instability wave at the position of the 
discontinuity. 

It is worth noting that  the right-hand-sides of (2.25)-(2.27) vanish in any region 
of the shear layer where 6 and yo remain constant, and we would lose no generality 
by requiring that Gl = 6, = j7, = V = 0 in such regions. The right-hand-sides of the 
jump conditions (2.31)-(2.32) would then depend only on quantities that  come from 
the variable4 side of the discontinuity. 

2.5. The diflracted solution 
It is clear that the contributions of each of the discontinuities to the homogeneous 
solution {uH, vH, p H )  are independent of each other t o  the order of approximation of 
the analysis. It is therefore necessary to consider only one such discontinuity, which, 
without loss of generality, we assume to be located a t  x = 0. Since the corresponding 
solution is, to lowest order, defined and continuous everywhere upstream and 
downstream of z = 0, and since the coefficients of (2.28)-(2.30) are independent of 
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x to  lowest order, i t  is convenient to  introduce the half-range Fourier transforms 

(2.35) 

(2.36) 

where the symbol w refers to any of the three quantities, u, v, p .  Then it  follows from 
(2.28)-( 2.30) that  

is@%+ - + U'U, SiSkji, - = T S ( U U H + P H ) ( , = O T ,  (2.37) 

iS@U, +Dp+ - = T G U V ~ I , , , ~ ,  (2.38) 

iSM2@ji+ - +DU+ - +iSkG, = T S ( U H + M ~ U ~ H ) I , - ~ T ,  (2.39) 

@ = U k - w  (2.40) 

and x = 0 T denotes the limit as z --f 0 through negative/positive values of x. 
Adding the two equations in (2.37), and similarly for the two equations in (2.38) 

and (2.39), and using (2.31)-(2.33) to  eliminate the resulting jumps in {uH, v H , p H } ,  
yields 

i8@G+ U'v+ikSji = -SBA[Uti,+p,], (2.41) 

iS@V+Dp = -SBA[UU,+ V(Go+M2Upo)],  (2.42) 

i&M2@p+Dv+ikSG = -SBA[G,+M2Upl], (2.43) 

where 

where 
w = iii.++w- (2.44) 

for w = u, v or p is the full-range Fourier transform of the indicated quantity. 
Eliminating U and U between these equations yields 

where 

(2.46) 

is the compressible Rayleigh operator. The right-hand side of (2.45) depends on El, 
Ul and pl, which can only be obtained by solving the inhomogeneous systems 
(2.25)-(2.27), which cannot in general be done analytically. The analysis is only 
manageable because these quantities can be eliminated from the far-field equa- 
tions without actually solving (2.25)-(2.27). This is most directly accomplished by 
rearranging (2.45) to obtain (2.51) below. However, the algebra is quite tedious, 
and i t  is easier to work backwards by inserting 

(2.47) 

(2.48) 

where (2.49) 
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and A = q6'+ yi, (2.50) 

into 

(2.51) 

using (2.18)-(2.20) and (2.25)-(2.27) to rearrange the result, and comparing it with 
(2.45), to show that 

A[ U'( V'V,- VDV,) + CV DGo] a 
2 g2 = -- 

a >"I (ax, ax, a 
a 

-2U' -c+c- - (2.52) 

and g3 is a polynomial in k and M. We can calculate the acoustic radiation without 
knowing anything more about its structure. Together with the third term under the 
derivative D, it accounts for the compressibility effects on the right-side of (2.51). 

Now let F+ and F- be the two independent homogeneous solutions of (2.51) that 
remain bounded as q+ + co and 7 +- co respectively. Then a particular solution of 
(2.51) that vanishes as T,+ & co is given by 

2 

p = .  - BA[rsl' + B a r  K(q, Slk) C (ik)n G,(flk) df ,  
la8 -03 n-0  

where 

W E  F-DF+-F+DF- 

is the Wronskian of F ,  , and 

(2.53) 

(2.54) 

(2.55) 

Go = G 3 D  (Dg, - iWc2A[Aji0]) O2 , (2.56) 

(2.57) 

G2 = Sg,. (2.58) 

It follows from (2.35), (2.36) and (2.44) that p H  is the inverse Fourier transform of 
(2.53), so that when x $; 0 

(2.59) 

where the integration contour for the integration over k is to be taken below the pole 
at k = w / U .  The contribution from this pole represents the gust or hydrodyamic 
solution (Goldstein 1979). Since the contour is closedin the lower half-plane when x < 0 
and in the upper half-plane when x > 0,  this latter solution only exists downstream 
of the discontinuity. 

Within the shear layer where q = 0 ( 1 ) ,  F ,  possess expansions of the form 

F,  = F',0)+M2S2F~)+O(M4) - - as M+O, (2.60) 
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where 

and 

(2.61) 

(2.62) 

(2.63) 

is the incompressible Rayleigh operator. These solutions will vanish at infinity, and 
in fact satisfy the ' incompressible ' boundary conditions 

F(+n)+eTlklBT - as q + f o o ,  for n=0,1.  (2.64) 

Using the method of variation of parameters, we find that FP) - are given in terms 
of the zeroth-order solutions by 

(2.65) 

3. The far field 

asymptotic behaviour of the flow as 
Since the instability waves undergo exponential decay outside t.,e shear layer, the 

r = ( s 2 +  y2)t (3.1) 

goes to infinity is primarily determined by the diffracted solution (2.59). 

3.1. Asymptotic form of diflracted solution 

Since, ascan be seenfrom (2.60) and (2.64), KK exp[-IkI6Iq-f1] as lq-f l- tco, the 
integral of (2.59) has no point of stationary phase, and the dominant contribution 
to the integral comes from the region near k x 0. 

The zeroth-order solutions F$') - that satisfy the boundary conditions (2.64) behave 
like 

uniformly in q as k+O. Inserting this into (2.65), we find that the first-order solutions 
are given by 

uniformly in 7 as k+O. 
It follows from (2.12), (2.40), (2.54), (2.55) and (2.60) that 

and 

(3.3) 

(3.4) 

+O(k2)+M20(k0)+O(M4) (3.5) 



172 M .  E .  Goldstein 

uniformly in y and ij as k, M+O, where g denotes the value of y corresponding to 
?j, and we have used the fact that WIG2 is equal to a constant. It now follows from 
(2.55)-(2.59) that terms in g, that can be expressed as the mth derivative with respect 
to y of a function that vanishes as y + & 00 will make negligible contributions to (2.59) 
as r+  m in comparison with terms that can only be expressed as the (m- 1)th such 
derivative. Using (2.18)-(2.20) and (2.25)-(2.27), we find that the second term in 
square brackets in (2.52) can be expressed as the derivative of a function of this type. 
Hence inserting (2.47), (2.48) and (2.52) into (2.56)-(2.58), inserting these results and 
(3.5) into (2.59), integrating by parts, recalling that g3 is a polynomial in k, and noting 
that the O(M2) terms in (2.56) and (2.57) therefore make only negligible contributions, 
we obtain, upon inverting the Fourier transform (see Lighthill 1964, p. 43), 

+O(r-3)+M20(r0)+O(M4)  as r - t c o ,  M+O, (3.6) 
where 

2i 
g E - [ 1 - ( ~ M w ) ~ ]  In r (3-7) 7t 

and 

1 Q =--jm 2 A[VDi70+-(V'~o-BD~o) u' dy, 
C -m 

11 (3.8) 

(3.9) 

(3.10) 

The incompressible limit is obtained by putting M = 0 in (3.7). The result shows 
that the incompressible pressure fluctuations exhibit quadrupole-type behaviour at  
large distances from the shear layer. We have retained the O(M2)  terms that exhibit 
the largest growth rates as r - t  co, since these will be needed in order to determine 
the acoustic solution completely. It is clear that these terms will not be changed if 
the instability wave (go in (3.8)-(3.10)) is treated as incompressible. 

3.2. Evaluation of quadrupole strengths for tanh proJile 

Ho & Huang's (1982, see figure 23) measurements indicate that the mean velocity 
should be well represented by the tanh profile 

U ( y )  = 1 + h tanh y, 

where (see (2.1)) 

(3.11) 

(3.12) 

We have already noted that the instability waves achieve their maximum 
amplitudes a t  the slope discontinuities S,, i.e. their neutral-stability points occur at 
these positions. For example, the fundamental-frequency instability reaches its 
neutral-stability point at S,  in figure 3, and, since the shear layer exhibits little or 
no growth between S ,  and S,, should remain fairly close to its neutral-stability point 
until it reaches S, - though the data of Ho & Huang (1982) indicates that it actually 
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undergoes a fair amount of decayt in this region. I n  any case, most of the fundamental 
tone should be generated a t  the slope discontinuity/discontinuities Sj where the 
fundamental-instability wave achieves its neutral-stability point. This is, of course, 
also true for the subharmonics. 

It is therefore appropriate to treat Go as a neutral-instability wave in (3.8)-(3.10). 
Fortunately, the neutral eigensolution of the incompressible Rayleigh equation for 
a tanh profile can be written down in simple closed form (Drazin & Howard 1966, 
p. 42), viz 

c = a&= 1 and Vo = Asechq, (3.13), (3.14) 

where A = G o ( 0 , O )  is the slowly varying amplitude function a t  the position of the 
discontinuity. Inserting (3.1 1 )  into (2.131, inserting the result together with 
(3.1 1)-(3.14) into (3.8)-(3.10), and carrying out the indicated integrations, we obtain 
(Gradshteyn & Ryzhik 1965, pp. 98 and 535) 

Qll = AA{$[x +$A) A[&'] + A X  A[y;]}, (3.15) 

&12 = AAxA[Y;l, (3.16) 

(3.17) QZ2 = A %{A( 1 - In 2) A[&'] + A[ Vl(zl, O ) ] } .  

3.3. The acoustic solution 

Compressibility effects cannot, of course, be neglected a t  large distances from the 
source, even when the Mach number is small - though the mean velocity can be set 
to zero in this region. The pressure fluctuations due to a harmonic line-monopole 
source in a non-moving medium is 

Hp)(wMr) e-iot, (3.18) 

where H p )  is the Hankel function in the usual notation. Equation (3.6) suggests that  
the outer solution should be a superposition of line-quadrupole sources of the form 

(3.19) 

where the quadrupole strengths qii are determined by matching (in the matched 
asymptotic expansion sense) with the inner solution given by the former equation. 

The one-term outer expansion of the one-term inner expansion of the pressure 
fluctuations in powers of M 2  (see Van Dyke 1964, p. 64) is given by (3.6) and (3.7) 
with M = 0. Since 

2i a 2  a 2  

x axz aY2 
Hp)+-lnr as r+O and -lnr=--lnr, 

i t  follows that (3.5) and (3.11) will match to  lowest order if 

The individual values of qll  and q22 are determined by the O(M2) terms. Thus the 
outer expansion of the 2-term inner expansion (in power of M 2 )  produces the term 

t Which is still relatively small when compared with the growth that it undergoes upstream of 
the neutral-stability point. 
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Using the small-argument asymptotic expansion of the Hankel function (Abramowitz 
& Stegun 1964, p. 360), we find that this term can only be matched by the outer 
solution if 

qii + q 2 2  = $BS2(Qii + Q22).  (3.22) 

It follows from (3.20)-(3.22) that  the far-field pressure fluctuation is also given by 

g = @') 0 (Mwr). (3.23) 

Expanding this for large r (Abramowitz & Stegun 1964, p. 364) and inserting the 
result into (3.6) shows that the far-field pressure fluctuation due to  a single mean-slope 
discontinuity Si is given by 

(3.6), provided that we replace g by 

as r + m ,  (3.24) 

where 8 = c0s-l ( z / r )  is the angle that the line connecting the source point Sj and the 
observation point makes with the x-axis. The Qij  should be reasonably well 
approximated by (3.15)-( 3.17). 

Acoustic-interference effects may become significant when the instability wave 
does not undergo too much decay before reaching the discontinuity downstream of 
the one where it first saturates. Since Ho & Huang's (1982) measurements suggest 
that  both the shear-layer growth-rate discontinuity and mean-slope discontinuity will 
be roughly the same a t  these two locations, we assume that the same is true for the 
transverse centreline velocity discontinuity A[ VL(xl, O ) ] .  Then i t  would not be 
unreasonable to assume that Qu will be equal and opposite at these two locations 
and that the Bs, which are defined by (2.34), differ only by a factor of e?I, where 
a. is the neutral wavenumber of the instability wave and t is the distance between 
the two discontinuities. 

The resulting sound field will then be given by (3.24) multiplied by the interference 
factor 

I 1 -eiaol 

when I + 2x/Mw and more generally by 

(3.25) I = 1 -ciao U I - M ~ ,  c~~ s) 

where co = a o / w ,  when it is not. For a tanh profile (see (3.14)) this becomes 

I = 1 -ei(l/&(l--Mcos@. (3.26) 

Interference effects can similarly be accounted for when the instability waves undergo 
damping between the discontinuities, as they do in Ho & Huang's (1982) experiment, 
but the exponent in (3.26) will then be complex. 

Since the Qij are effectively real, the mean-squared pressure produced by a single 
discontinuity is given by 

[(Qll cos2 8+ Q22 sin2 8)2 + 4Q;, cosz 8 sin2 81, (3.27) 
- (e  IBI S2(0) W w 2 ) 2  
P 2  - 87cMor 

and by this result multiplied by Ill2 when two discontinuities are involved. 
The Qi, should be fairly well approximated by (3.15)-(3.17). These equations show 

that  the acoustic pressure field is the superposition of the fields produced by the 
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shear-layer-thickness discontinuity A[#], the centreline-slope discontinuity A[yi] and 
the centreline transvere-discontinuity A[ V,(x,, O)]. The basic directivity patterns of 
the mean-square pressure for the first two of these sources are plotted in figure 6 for 
h = $, $, and 1 .  The levels are arbitrary. As is characteristic of fixed point quadrupoles, 
the results are symmetric about 8 = in. Only half the A[yi] pattern is shown. The 
interference factor which we have not included, can substantially modify these 
patterns, causing them to be highly asymmetric. 

4. Upstream influence and feedback 
A new flow field will be set up at  the surface of the splitter plate in order to cancel 

the transverse-velocity fluctuation e2iH of the diffracted solution at this position, and 
a new downstream-propagating instability wave will then be produced to eliminate 
the trailing-edge singularity that would otherwise occur in this flow (Crighton & 
Leppington 1974; Rienstra 1981). As noted in $ 1 ,  the process can be self-sustaining, 
i.e. resonant, when the latter instability wave coincides with the one that originally 
produced the diffracted solution. But this can only occur if eV, and V,(O,z), the 
original instability-wave amplitude, are roughly equal at  the trailing edge. 

Since this point lies far upstream (in terms of shear-layer thicknesses 8) of the 
discontinuity where eeH was originally generated, the corresponding pressure fluctu- 
ation epH is well approximated by (3.6) with g given by (3.7) (with M set equal to  
zero) when compressibility is not important and by (3.23) when it is. The Mach 
number is low enough so that i t  is unimportant in the Ho & Huang (1982) experiment, 
and high enough so that it probably is important in the Oster & Wygnanski (1982) 
experiment. 

We only consider the incompressible case. Then since 1x1 $- lyl it follows from (2.29) 

Observation angle, 6 (rad) 

FIQURE 6. Intrinsic radiation patterns produced by shear-layer thickness discontinuity and by 
shear-layer centreline-slope discontinuity quadrupoles. 
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For a tanh profile (3.13) and (3.126) imply that 

at the location x of the splinter plate, where (see (2.34) and the equation following 
(3.15)) 

(4.3) 

is the total amplification of the centreline transverse-velocity fluctuation of the 
instability wave, i.e. the ratio of the maximum to minimum values of this quantity. 
Although Ho & Huang (1982) did not measure (T explicitly, we expect i t  to be of the 
same magnitude as the square root of their ‘streamwise energy content ’ E ( f )  (in their 
notation). The ratios of maximum to minimum I& are never much more than lo2 in 
their experiment, which is consistent with the predictions of linear stability theory 
for their flow. 

Although Ho & Huang (1982) present no results for the physical centreline slope 
discontinuity eA[yi], they did measure this quantity, and Professor Ho was kind 
enough to send me the results, which show that this quantity never exceeds 5 x 
h was about + in their experiment, and we estimate that S(O)/x,  where So S(0) is roughly 
twice the momentum thickness, was about 3 x lop2. These estimates imply that 
~w~/12)0(0,~)1 was always very small ( *  lov4) a t  the end of the spltter plate in the 
Ho & Huang (1982) experiment, so that the present mechanism could not have 
produced a resonant interaction in this case. 

I would like to thank Professor C. M. Ho of the University of Southern California 
and Professor R. E. Arndt of the University of Minnesota for sending me some of 
their unpublished data. 
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